Publications

  1. Park, S., Western, L.M., Saito, T., Redington, A.L., Henne, S., Fang, X., Prinn, R.G., Manning, A.J., Montzka, S.A., Fraser, P.J., Ganesan, A.L., Harth, C.M., Kim, J., Krummel, P.B., Liang, Q., Mühle, J., O’Doherty, S., Park, H., Park, M.-K., Reimann, S., Salameh, P.K., Weiss, R.F., Rigby, M., 2021. A decline in emissions of CFC-11 and related chemicals from eastern China. Nature 590, 433–437. https://doi.org/10.1038/s41586-021-03277-w
  2. Say, D., Kuyper, B., Western, L., Khan, M.A.H., Lesch, T., Labuschagne, C., Martin, D., Young, D., Manning, A.J., O’Doherty, S., Rigby, M., Krummel, P.B., Davies-Coleman, M.T., Ganesan, A.L., Shallcross, D.E., 2020. Emissions and Marine Boundary Layer Concentrations of Unregulated Chlorocarbons Measured at Cape Point, South Africa. Environmental Science and Technology 54, 10514–10523. https://doi.org/10.1021/acs.est.0c02057
  3. Ganesan, A.L., Manizza, M., Morgan, E.J., Harth, C.M., Kozlova, E., Lueker, T., Manning, A.J., Lunt, M.F., Mühle, J., Lavric, J.V., Heimann, M., Weiss, R.F., Rigby, M., 2020. Marine Nitrous Oxide Emissions From Three Eastern Boundary Upwelling Systems Inferred From Atmospheric Observations. Geophysical Research Letters 47. https://doi.org/10.1029/2020GL087822
  4. Western, L.M., Sha, Z., Rigby, M., Ganesan, A.L., Manning, A.J., Stanley, K.M., O’Doherty, S.J., Young, D., Rougier, J., 2020. Bayesian spatio-temporal inference of trace gas emissions using an integrated nested Laplacian approximation and Gaussian Markov random fields. Geoscientific Model Development 13, 2095–2107. https://doi.org/10.5194/gmd-13-2095-2020
  5. Tunnicliffe, R.L., Ganesan, A.L., Parker, R.J., Boesch, H., Gedney, N., Poulter, B., Zhang, Z., Lavrič, J.V., Walter, D., Rigby, M., Henne, S., Young, D., O’Doherty, S., 2020. Quantifying sources of Brazil’s CH4 emissions between 2010 and 2018 from satellite data. Atmospheric Chemistry and Physics 20, 13041–13067. https://doi.org/10.5194/acp-20-13041-2020
  6. Monteil, G., Broquet, G., Scholze, M., Lang, M., Karstens, U., Gerbig, C., Koch, F.-T., Smith, N.E., Thompson, R.L., Luijkx, I.T., White, E., Meesters, A., Ciais, P., Ganesan, A.L., Manning, A., Mischurow, M., Peters, W., Peylin, P., Tarniewicz, J., Rigby, M., Rödenbeck, C., Vermeulen, A., Walton, E.M., 2020. The regional European atmospheric transport inversion comparison, EUROCOM: first results on European-wide terrestrial carbon fluxes for the period 2006–2015. Atmospheric Chemistry and Physics 20, 12063–12091. https://doi.org/10.5194/acp-20-12063-2020
  7. Ganesan, A.L., Schwietzke, S., Poulter, B., Arnold, T., Lan, X., Rigby, M., Vogel, F.R., Werf, G.R., Janssens‐Maenhout, G., Boesch, H., Pandey, S., Manning, A.J., Jackson, R.B., Nisbet, E.G., Manning, M.R., 2019. Advancing Scientific Understanding of the Global Methane Budget in Support of the Paris Agreement. Global Biogeochemical Cycles 33, 1475–1512. https://doi.org/10.1029/2018GB006065
  8. Kuyper, B., Say, D., Labuschagne, C., Lesch, T., Joubert, W.R., Martin, D., Young, D., Khan, M.A.H., Rigby, M., Ganesan, A.L., Lunt, M.F., O’Dowd, C., Manning, A.J., O’Doherty, S., Davies-Coleman, M.T., Shallcross, D.E., 2019. Atmospheric HCFC-22, HFC-125, and HFC-152a at Cape Point, South Africa. Environmental Science and Technology 53, 8967–8975. https://doi.org/10.1021/acs.est.9b01612
  9. Say, D., Ganesan, A.L., Lunt, M.F., Rigby, M., O’Doherty, S., Harth, C., Manning, A.J., Krummel, P.B., Bauguitte, S., 2019. Emissions of halocarbons from India inferred through atmospheric measurements. Atmospheric Chemistry and Physics 19, 9865–9885. https://doi.org/10.5194/acp-19-9865-2019
  10. Rigby, M., Park, S., Saito, T., Western, L.M., Redington, A.L., Fang, X., Henne, S., Manning, A.J., Prinn, R.G., Dutton, G.S., Fraser, P.J., Ganesan, A.L., Hall, B.D., Harth, C.M., Kim, J., Kim, K.-R., Krummel, P.B., Lee, T., Li, S., Liang, Q., Lunt, M.F., Montzka, S.A., Mühle, J., O’Doherty, S., Park, M.-K., Reimann, S., Salameh, P.K., Simmonds, P., Tunnicliffe, R.L., Weiss, R.F., Yokouchi, Y., Young, D., 2019. Increase in CFC-11 emissions from eastern China based on atmospheric observations. Nature 569, 546–550. https://doi.org/10.1038/s41586-019-1193-4
  11. Mühle, J., Trudinger, C.M., Western, L.M., Rigby, M., Vollmer, M.K., Park, S., Manning, A.J., Say, D., Ganesan, A., Steele, L.P., Ivy, D.J., Arnold, T., Li, S., Stohl, A., Harth, C.M., Salameh, P.K., McCulloch, A., O’Doherty, S., Park, M.-K., Jo, C.O., Young, D., Stanley, K.M., Krummel, P.B., Mitrevski, B., Hermansen, O., Lunder, C., Evangeliou, N., Yao, B., Kim, J., Hmiel, B., Buizert, C., Petrenko, V.V., Arduini, J., Maione, M., Etheridge, D.M., Michalopoulou, E., Czerniak, M., Severinghaus, J.P., Reimann, S., Simmonds, P.G., Fraser, P.J., Prinn, R.G., Weiss, R.F., 2019. Perfluorocyclobutane (PFC-318, c-C4F8 in the global atmosphere. Atmospheric Chemistry and Physics 19, 10335–10359. https://doi.org/10.5194/acp-19-10335-2019
  12. White, E.D., Rigby, M., Lunt, M.F., Smallman, T.L., Comyn-Platt, E., Manning, A.J., Ganesan, A.L., O’Doherty, S., Stavert, A.R., Stanley, K., Williams, M., Levy, P., Ramonet, M., Forster, G.L., Manning, A.C., Palmer, P.I., 2019. Quantifying the UK’s carbon dioxide flux: an atmospheric inverse modelling approach using a regional measurement network. Atmospheric Chemistry and Physics 19, 4345–4365. https://doi.org/10.5194/acp-19-4345-2019
  13. Fang, X., Park, S., Saito, T., Tunnicliffe, R., Ganesan, A.L., Rigby, M., Li, S., Yokouchi, Y., Fraser, P.J., Harth, C.M., Krummel, P.B., Mühle, J., O’Doherty, S., Salameh, P.K., Simmonds, P.G., Weiss, R.F., Young, D., Lunt, M.F., Manning, A.J., Gressent, A., Prinn, R.G., 2019. Rapid increase in ozone-depleting chloroform emissions from China. Nature Geoscience 12, 89–93. https://doi.org/10.1038/s41561-018-0278-2
  14. Lunt, M.F., Park, S., Li, S., Henne, S., Manning, A.J., Ganesan, A.L., Simpson, I.J., Blake, D.R., Liang, Q., O’Doherty, S., Harth, C.M., Mühle, J., Salameh, P.K., Weiss, R.F., Krummel, P.B., Fraser, P.J., Prinn, R.G., Reimann, S., Rigby, M., 2018. Continued emissions of the ozone-depleting substance carbon tetrachloride from eastern Asia. Geophysical Research Letters 45. https://doi.org/10.1029/2018GL079500
  15. Prinn, R.G., Weiss, R.F., Arduini, J., Arnold, T., DeWitt, H.L., Fraser, P.J., Ganesan, A.L., Gasore, J., Harth, C.M., Hermansen, O., Kim, J., Krummel, P.B., Li, S., Loh, Z.M., Lunder, C.R., Maione, M., Manning, A.J., Miller, B.R., Mitrevski, B., Mühle, J., O’Doherty, S., Park, S., Reimann, S., Rigby, M., Saito, T., Salameh, P.K., Schmidt, R., Simmonds, P.G., Steele, L.P., Vollmer, M.K., Wang, R.H., Yao, B., Yokouchi, Y., Young, D., Zhou, L., 2018. History of chemically and radiatively important atmospheric gases from the Advanced Global Atmospheric Gases Experiment (AGAGE). Earth System Science Data 10, 985–1018. https://doi.org/10.5194/essd-10-985-2018
  16. Pison, I., Berchet, A., Saunois, M., Bousquet, P., Broquet, G., Conil, S., Delmotte, M., Ganesan, A., Laurent, O., Martin, D., O'Doherty, S., Ramonet, M., Spain, T.G., Vermeulen, A., Yver Kwok, C., 2018. How a European network may help with estimating methane emissions on the French national scale. Atmospheric Chemistry and Physics 18, 3779–3798. https://doi.org/10.5194/acp-18-3779-2018
  17. Murguia-Flores, F., Arndt, S., Ganesan, A.L., Murray-Tortarolo, G., Hornibrook, E.R.C., 2018. Soil Methanotrophy Model (MeMo v1.0): a process-based model to quantify global uptake of atmospheric methane by soil. Geoscientific Model Development 11, 2009–2032. https://doi.org/10.5194/gmd-11-2009-2018
  18. Ganesan, A.L., Stell, A.C., Gedney, N., Comyn-Platt, E., Hayman, G., Rigby, M., Poulter, B., Hornibrook, E.R.C., 2018. Spatially Resolved Isotopic Source Signatures of Wetland Methane Emissions. Geophysical Research Letters 45, 3737–3745. https://doi.org/10.1002/2018GL077536
  19. Ganesan, A.L., Rigby, M., Lunt, M.F., Parker, R.J., Boesch, H., Goulding, N., Umezawa, T., Zahn, A., Chatterjee, A., Prinn, R.G., Tiwari, Y.K., van der Schoot, M., Krummel, P.B., 2017. Atmospheric observations show accurate reporting and little growth in India’s methane emissions. Nature Communications 8. https://doi.org/10.1038/s41467-017-00994-7
  20. Rigby, M., Montzka, S.A., Prinn, R.G., White, J.W.C., Young, D., O’Doherty, S., Lunt, M.F., Ganesan, A.L., Manning, A.J., Simmonds, P.G., Salameh, P.K., Harth, C.M., Mühle, J., Weiss, R.F., Fraser, P.J., Steele, L.P., Krummel, P.B., McCulloch, A., Park, S., 2017. Role of atmospheric oxidation in recent methane growth. Proceedings of the National Academy of Sciences 114, 5373–5377. https://doi.org/10.1073/pnas.1616426114
  21. Lunt, M.F., Rigby, M., Ganesan, A.L., Manning, A.J., 2016. Estimation of trace gas fluxes with objectively determined basis functions using reversible-jump Markov chain Monte Carlo. Geoscientific Model Development 9, 3213–3229. https://doi.org/10.5194/gmd-9-3213-2016
  22. Zammit-Mangion, A., Cressie, N., Ganesan, A.L., 2016. Non-Gaussian bivariate modelling with application to atmospheric trace-gas inversion. Spatial Statistics 18, 194–220. https://doi.org/10.1016/j.spasta.2016.06.005
  23. Nisbet, E.G., Dlugokencky, E.J., Manning, M.R., Lowry, D., Fisher, R.E., France, J.L., Michel, S.E., Miller, J.B., White, J.W.C., Vaughn, B., Bousquet, P., Pyle, J.A., Warwick, N.J., Cain, M., Brownlow, R., Zazzeri, G., Lanoisellé, M., Manning, A.C., Gloor, E., Worthy, D.E.J., Brunke, E.-G., Labuschagne, C., Wolff, E.W., Ganesan, A.L., 2016. Rising atmospheric methane: 2007-2014 growth and isotopic shift. Global Biogeochemical Cycles 30, 1356–1370. https://doi.org/10.1002/2016GB005406
  24. Ganesan, A.L., Manning, A.J., Grant, A., Young, D., Oram, D.. E., Sturges, W.T., Moncrieff, J.B., O’Doherty, S., 2015. Quantifying methane and nitrous oxide emissions from the UK and Ireland using a national-scale monitoring network. Atmospheric Chemistry and Physics 15, 6393–6406. https://doi.org/10.5194/acp-15-6393-2015
  25. Lunt, M.F., Rigby, M., Ganesan, A.L., Manning, A.J., Prinn, R.G., O’Doherty, S., Mühle, J., Harth, C.M., Salameh, P.K., Arnold, T., Weiss, R.F., Saito, T., Yokouchi, Y., Krummel, P.B., Steele, L.P., Fraser, P.J., Li, S., Park, S., Reimann, S., Vollmer, M.K., Lunder, C., Hermansen, O., Schmidbauer, N., Maione, M., Arduini, J., Young, D., Simmonds, P.G., 2015. Reconciling reported and unreported HFC emissions with atmospheric observations. Proceedings of the National Academy of Sciences 112, 5927–5931. https://doi.org/10.1073/pnas.1420247112
  26. Zammit-Mangion, A., Cressie, N., Ganesan, A.L., O’Doherty, S., Manning, A.J., 2015. Spatio-temporal bivariate statistical models for atmospheric trace-gas inversion. Chemometrics and Intelligent Laboratory Systems 149, 227–241. https://doi.org/10.1016/j.chemolab.2015.09.006
  27. Ganesan, A.L., Rigby, M., Zammit-Mangion, A., Manning, A.J., Prinn, R.G., Fraser, P.J., Harth, C.M., Kim, K.-R., Krummel, P.B., Li, S., Mühle, J., O'Doherty, S.J., Park, S., Salameh, P.K., Steele, L.P., Weiss, R.F., 2014. Characterization of uncertainties in atmospheric trace gas inversions using hierarchical Bayesian methods. Atmospheric Chemistry and Physics 14, 3855–3864. https://doi.org/10.5194/acp-14-3855-2014
  28. Kim, J., Fraser, P.J., Li, S., Mühle, J., Ganesan, A.L., Krummel, P.B., Steele, L.P., Park, S., Kim, S.-K., Park, M.-K., Arnold, T., Harth, C.M., Salameh, P.K., Prinn, R.G., Weiss, R.F., Kim, K.-R., 2014. Quantifying aluminum and semiconductor industry perfluorocarbon emissions from atmospheric measurements. Geophysical Research Letters 41, 4787–4794. https://doi.org/10.1002/2014GL059783
  29. Ganesan, A.L., Chatterjee, A., Prinn, R.G., Harth, C.M., Salameh, P.K., Manning, A.J., Hall, B.D., Mühle, J., Meredith, L.K., Weiss, R.F., O'Doherty, S., Young, D., 2013. The variability of methane, nitrous oxide and sulfur hexafluoride in Northeast India. Atmospheric Chemistry and Physics 13, 10633–10644. https://doi.org/10.5194/acp-13-10633-2013
  30. Rigby, M., Ganesan, A.L., Prinn, R.G., 2011. Deriving emissions time series from sparse atmospheric mole fractions. Journal of Geophysical Research 116. https://doi.org/10.1029/2010JD015401
  31. Mühle, J., Ganesan, A.L., Miller, B.R., Salameh, P.K., Harth, C.M., Greally, B.R., Rigby, M., Porter, L.W., Steele, L.P., Trudinger, C.M., Krummel, P.B., O’Doherty, S., Fraser, P.J., Simmonds, P.G., Prinn, R.G., Weiss, R.F., 2010. Perfluorocarbons in the global atmosphere: tetrafluoromethane, hexafluoroethane, and octafluoropropane. Atmospheric Chemistry and Physics 10, 5145–5164. https://doi.org/10.5194/acp-10-5145-2010